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Abstract
Local vibrational states (LVS) induced by a combined defect ‘impurity–sample surface’ are
discussed. An analytical approximation for the basic characteristics of the LVS is derived. The
approach developed can serve as an useful tool for the analysis of measured local frequencies
and intensities of LVS, and can also be employed to gain information on the interatomic
interactions and defect structure.

1. Introduction

As it is known, lightly or strongly-coupled impurities can
generate LVS (namely discrete vibrational levels in a crystal
that are located beyond the band of the quasi-continuous
phonon spectrum of a perfect lattice). The amplitudes of the
local vibrations decrease rapidly on moving away from the
defect. When the distance from the impurity atom becomes
much larger than the characteristic radius of the interatomic
interaction in the lattice, the amplitudes vanish exponentially.

For over six decades LVS have been investigated both the-
oretically (see e.g., [1–10]) and experimentally [5, 6, 11–17].
The results obtained in this area can be found in monographs
on crystal lattice dynamics, for example in [18–22]. Numerical
simulations [4–6] have led to significant progress in studying
the formation conditions and characteristics of LVS, such as
the frequencies.

Measured local vibration characteristics can be used to
deduce valuable information on the defect structure and force
interactions in real crystals. The quantities usually obtained in
experiments are the frequencies of the local vibrations. For the
analysis of experimental data it is essential to have analytical
expressions that relate the basic characteristics of LVS to the
parameters of the defect and the host lattice.

In this paper, LVS caused by the presence of a combined
‘impurity–sample surface’ defect are studied with the approach
developed in [7] for constructing analytical approximations
for the formation conditions and the characteristics of LVS.
The analysis carried out can be of interest in interpreting
data obtained via the methods of optical and point–contact

spectroscopy, both very powerful techniques for experimental
investigation of LVS.

2. Analytical description of local vibration
characteristics

The analytical approximation [7] proved to be a convenient
method providing a high-accuracy description of local
vibration frequencies in the phonon spectra of impurity-
containing crystals. The procedure is based on the vibration
classification accepted in the Jacobian-matrix (J -matrix)
method [23–25] and is essentially different from the traditional
plane–wave expansion.

In the J -matrix approach the space H of atomic
displacements in an arbitrary system is divided into subspaces
H (i) that are invariant with respect to the L̂-operator describing
the crystal lattice vibrations. Each of the subspaces H (i) is a set
of all linear combinations of the vectors in the sequence

{
L̂n �h(i)

0

}∞
n=0

= �h(i)
0 , L̂�h(i)

0 , L̂2 �h(i)
0 , . . . , L̂n �h(i)

0 , . . . . (1)

Here �h(i)
0 is vector which belongs to the space of the

atomic displacements H with the operator L̂. In the basis
{�h(i)

n }∞n=0 obtained by orthonormalization of the sequence (1)
the operator L̂(i) induced by the operator L̂ in the subspace
H (i) can be written as a tridiagonal J -matrix L̂ = Lik =
anδik+bn(δi,k+1+δi+1,k) having a simple spectrum (hereinafter
the index (i) indicating subspaces is omitted). The local Green
function (LGF) G(λ) of the system is the matrix element G00(λ)

of the operator Ĝ(λ) = (λÎ − L̂)−1, where Î is the unit
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operator, λ ≡ ω2 is the L̂-operator eigenvalue. The LGF can
be written as [23–25]

G(λ) = lim
n→∞G(n)(λ);

G(n)(λ) = Qn(λ) − bn−1Qn−1(λ)K∞(λ)

Pn(λ) − bn−1Pn−1(λ)K∞(λ)

(2)

where Pn(λ) and Qn(λ) are the polynomials of degree n and
n − 1, respectively. If the quasi-continuous spectrum band is
simply connected, i.e. ω ∈ [0; ωm], the following limiting-
value equations are valid for the matrix elements an and bn:
limn→∞ an = 2 limn→∞ bn = λm/2. The function

K∞(λ) = 4λ−2
m

{
2λ − λm + 2Z(λ)

√
λ |λ − λm |},

where Z(λ) ≡ i�(λ)�(λm − λ) − �(λ − λm) and �(x) is
the Heaviside function, is obtained by contracting a continued
fraction corresponding to the J -matrix whose elements are
equal to their asymptotic values.

From equation (2) one can conclude that spectral density
of states

�(λ) = π−1 ImG(λ) (3)

is the so-called ‘regular’ or ‘elliptic’ squared-frequency
distribution (see, e.g. [21]) modulated by a certain 2n-power
polynomial. The spectral density (3) is commonly used in
approximate calculation and is normalized per unit. Both the
function �(λ) and the approximation of the real part of the
Green function given by equation (2) are analytical inside the
continuous spectrum band. This approximation of the real
and imaginary parts of the Green function is not exact in
the continuous spectrum band, where Re G(λ) and Im G (λ)

are not analytical functions. The local Green function is an
analytical function beyond the continuous spectrum band. As
is demonstrated in [7] and as is discussed in the next section of
this paper, the convergence rate of this function is very high as
n increases and the approximations of equation (2) for n = 1
and for n � 1 coincide to a high degree of accuracy.

One can expect that the use of LGF G(1)(λ) will yield
a satisfactory description of LVS. Derivation of analytical
expressions for the first matrix elements a0 and b0 of
the J -matrix and, hence, for the function G(1)(λ) can be
accomplished straightforwardly.

The frequencies of LVS are solutions of the Lifshitz
equation [2], which can be written in the form

G(λ) = S(λ, �̂), λ > λm . (4)

The function S(λ, �̂) describes the influence of the defect and
depends on the corresponding parameters of the perturbation
operator �̂. In the case of a degenerate regular perturbation [2],
one can obtain an exact expression for this function. Thus for
a substitutional isotopic impurity one has

S(λ, �̂) ≡ S(λ, ε) = −1/(ω2ε), (5)

where ε ≡ (m̃ − m)/m is the mass defect of the impurity, m̃ is
the mass of the impurity, and m is the mass of an atom of the
host lattice.

In many cases direct determination of the poles of the
Green function

G̃(λ) ≡
(

�h0 ,
[
λÎ − L̂0 − �̂

]−1 �h0

)

of a perturbed system, that corresponds to the use of the
J -matrix of the operator L̂ = L̂0 + �̂ in equation (2),
can be a constructive alternative to treatment of the Lifshitz
equation. This procedure can also be employed for finding the
LVS caused by a non-degenerated perturbation operator, when
the perturbation does not affect the width of the continuous
spectrum band, or, in other words, when the perturbation leaves
the limiting values of the J -matrix intact. Such a perturbation
can be considered as ‘asymptotically degenerate’. The poles
of the Green function λd are the frequencies of local vibrations
squared. The residues of λd at the poles μ

(d)
0 ≡ résλ=λdG00(λ)

determine the intensities, thus characterizing the amplitude of
the same discrete-frequency vibrations in the subspace induced
by the vector �h0.

One can introduce the parameters η and ζ , describing the
deviation of the matrix elements a0 and b0 from their limiting
values

a0 = a/(1 + η), b0 = b/
√

1 + ζ ,

η, ζ ∈ [−1 , +∞) ,
(6)

and get for the squared LVS frequency [7]

λ1(η, ζ ) ≡ ω2
l (η, ζ ) = λm

4ζ(1 + η)

×
⎧
⎨
⎩2ζ − η −

√
−ζ + (η − ζ )2

1 + ζ

⎫
⎬
⎭ . (7)

The local vibration exists when

ζ < −3/4; η ∈ [−1 , +∞); or

ζ > −3/4; η < −(1 + 2ζ )/(3 + 4ζ ).
(8)

If equation (8) is satisfied and the local vibrational state exists,
its intensity is given by

μ0 =
⎛
⎝η + (1 + 2ζ )

√
−ζ + (η − ζ )2

1 + ζ

⎞
⎠

×
⎛
⎝2ζ

√
−ζ + (η − ζ )2

1 + ζ

⎞
⎠

−1

. (9)

Substitution of (7) into the Lifshitz equation shows that
λl(η, ζ ) obeys this equation when (8) is satisfied.

The attenuation of the vibrations can be characterized by
a decrease of their amplitudes with the growth of the ‘number’
n. As demonstrated in [7], the variations of the amplitudes are
proportional to P2

n (λ1). The values of μn form a geometric

progression μn = μ1qn−1 = μ0

1 + ζ
qn for n � 1 if they are

non-zero, i.e. when the requirement of equation (8) is satisfied
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Figure 1. Approximation for the Green function G(1)(ω) and G(76)(ω) of Ag and the solution of Lifshitz equation (left). Relative deviation of
this approximation for various fcc crystals (right).

and the local levels really exist. The denominator of this
progression q = [√1 + ζ P1(λ1)]2 can be written as

q =
⎧
⎨
⎩

(1 + ζ )

ζ(1 + η)

⎡
⎣η +

√
−ζ + (η − ζ )2

1 + ζ

⎤
⎦
⎫
⎬
⎭

2

.

The quantity q is less than unity under the condition of
equation (8); at the same time

∑∞
n=0 μn = 1.

Having found the functions η and ζ for particular
crystalline structures with various defect configurations and
substituting them into equations (7)–(9), we can obtain the
dependencies of the formation conditions and the dynamic
characteristics of LVS on the parameters describing defects and
a perfect lattice.

3. Local vibrations caused by near-surface
substitutional impurity

Let us consider the fcc crystal lattices of some metals (Ag, Cu,
Al) and solid rare gases (Ar, Kr, Xe). The description of the
interatomic interaction in these substances can be reduced to
the interaction between the nearest neighbors [21, 27]. The
matrices of force constants are [28]

�ik

(
r, r +

[
a

2
; a

2
; 0

])
= −

(
α γ 0
γ α 0
0 0 β

)
. (10)

The force constant matrices for the rest of the nearest neighbors
r + Δ can be found from equation (10) using Oh-point group
symmetry operations. The translation invariance condition
results in the self-action matrix �ik(r, r) = −∑

Δ �ik(r, r+
Δ), which has the form �ik(r, r) = 4(2α + β)δik .

The left-hand side of figure 1 shows the dependencies of
the spectral density ν(ω) = π−1 Im G(ω) (curves 1 and 1′)
and the real part of the Green function G(n)(ω) ≡ 2ω G(n)(λ)

(curves 2 and 2′) on the frequency ω. The force constants α,
β , and γ were obtained in [26]. Curves 1 and 2 correspond to
n = 76, the dashed lines 1′ and 2′ are for n = 1. As can be
seen, in the continuous spectrum band ω ∈ [0 , ωm] the results
of the calculations for n = 1 and for n = 76 differ significantly,
while outside this band at ω > ωm curves 2 and 2′ are very
close to each other, except for the very narrow region near the
maximum frequency ωm of the continuous spectrum.

Figure 2. Regions where LVS exist for displacements of a surface
atom along the normal to the surface Sn and along the surface Sτ , as
well as for displacements of a subsurface atom SubSn and SubSτ .
LVS appear in the areas above the corresponding curves.

The right-hand side of figure 1 shows the relative deviation
of the approximation G(1)(ω) from G(76)(ω)

� ≡ (G(1)(ω) − G(76)(ω))/G(76)(ω) (11)

as a function of the frequency in the region ω � ωm for
the perfect crystal lattices of Ag, Cu, Al, Ar, Kr, and Xe.
One can see that the values of � vary from ∼1% near ωm to
∼0.1–0.01% at an appreciable distance from the edge of the
continuous spectrum.

As an example, the left-hand side of figure 1 illustrates
the graphical solution of the Lifshitz equation [2, 23] for
the case of an isolated Al impurity. The Al admixture to
Ag behaves as a light isotopic substitutional impurity [21].
Curve 3 in this figure corresponds to the function S(ω, ε) =
−2/(ω ε) [10, 23] with ε ≈ −0.749 87. The ω-values at
which this curve crosses the G(76)(ω) and G(1)(ω) curves, being
the local frequencies, coincide within ∼10−4. In the isotopic
approximation adopted by us, the Al impurity in Ag generates
LVS with frequency νl ≈ 7.752 THz.

For an impurity, that is not isotopic in the bulk,
the force constants of the interaction can be found from

3
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Figure 3. Dependence of the frequencies and intensities of LVS on the parameter α0.

equations (6), (7) and (9) with

η(ε, α̃, β̃, γ̃ ) = ε − 1

2
+ γ̃ (1 + ε)

2α̃ + β̃
;

ζ(ε, α̃, β̃, γ̃ )

=
−4 (α̃−γ̃ )2 + β̃ (4α̃+4γ̃−3β̃) + ε

[
2(α̃+γ̃ )+β̃

]2

4
[
2(α̃2 + γ̃ 2) + β̃2

] .

(12)

Substitution of equation (12) into equations (7) and (9) involves
rather intricate expressions that are hardly appropriate here.
The force constants can be directly evaluated making use of
these algebraic expressions supplemented, for example with
the relations for the local vibration intensities in the first
coordination sphere μ1 = P2

1 (λl)μ0. Note, μ1 is a measurable
quantity.

Now we turn to the discussion of the formation of the
fcc(111) (close-packed) surface in a crystal, e.g. such as Ag.
In this case, the change in the force interaction between
the surface atoms is negligible, and the interaction of the
surface atoms with the atoms of the subsurface layer may be
considered as central

�
(S)
ik (r, r(S) + Δ(SubS)) = α0

�
(SubS)
i �

(SubS)
k

|�(SubS)|2 .

The parameters η and ζ have the form

η(ε, α0) = 4γ − 2α + ε[2(α + γ ) + β]
2(α + α0 − γ )

,

ζ(ε, α0) = 16αγ+4β(α+γ−β)−8α2
0+ε

[
2(α+γ )+β

]2

2[2(α−γ )2+β2+4α2
0]

(13)

for the displacement of the surface atom along the normal to
the surface and

η(ε, α0) = 2γ − α0 + 2ε[2(α + γ ) + β]
4α + 2β + 2γ + α0

,

ζ(ε, α0) = 4(αβ+αγ+βγ )−β2−2α2
0+ε

[
2(α+γ )+β

]2

2[(α−γ )2+α2+β2+γ 2+α2
0 ]

(14)
in the case the displacement along the surface.

Similarly, we have

η(ε, α0) = −2α−β+6γ−4α0+2ε[2(α+γ )+4β]
6α + 3β − 2γ + 4α0

,

ζ(ε, α0)

= 4(αβ+αγ+βγ )−2(α2+β2+γ 2+4α2
0)+ε[2(α+γ )+β]2

2(α−γ )2+4α2+3β2+4γ 2+8α2
0

(15)

for the displacement of the subsurface atom along the normal
to the surface and

η(ε, α0) = −2α − β + 3γ − α0 + 2ε[2(α + γ ) + 4β]
6α + 3β + γ + α0

,

ζ(ε, α0) = {
2(3αβ + 2αγ + 3βγ ) − 2(α2 + β2 + γ 2+α2

0)

+ ε[2(α+γ )+β]2
}{

2(α − γ )2 + (α + γ )2

+ 5(α2 + γ )2 + 3β2 + 2α2
0

}−1

(16)

for the displacement of the atom along the surface.
With the help of equation (8) and (13)–(16) we find the

parameters α0 and ε that specify conditions under which LVS
exist. The Al impurity in Ag causes LVS in all of the cases
shown in figure 2.

The local frequencies ωl/ωm , where according to [26]
2πωm ≈ 5.537 THz, along with their intensities at the

4
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impurity μ0 and in the first coordination sphere μ1 are
displayed in figure 3 as functions of the parameter α0 for an
Al impurity in Ag. Solid lines represent the calculations using
equations (7), (9), and (13)–(16). The points on the curves
indicate the calculated poles of the functions G̃(76)(λ, α0, ε)

and the residues at these poles. Figure 3 demonstrates
the acceptable agreement between the analytical and exact
numerical calculations for frequencies and intensities of LVS.

4. Conclusions

The method proposed, for constructing analytical approxima-
tions for the basic characteristics of LVS, is shown to be effec-
tive and accurate in calculations of the frequencies and intensi-
ties of LVS caused by defects, such as near-surface impurities.
Analytical approximations for LVS due to impurities near the
other boundaries of the sample, e.g. near surfaces with other
orientations, ribs and vertices, and in the vicinity of vacan-
cies [29] can be derived with the approach developed. These
analytical approximations provide us with useful and versatile
tools to deduce the parameters of the host crystal and its defect
structure from frequencies and other characteristics of LVS ob-
tained in experiments.
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[12] Naĭdyuk Yu G, Yanson I K, Lysykh A A and Shitikov Yu L
1984 Sov. Phys.—Solid State 26 1656

[13] McCluskey M D, Zhuravlev K K, Davidson B R and
Newman R C 2001 Phys. Rev. B 63 125202

[14] Najmi S, Chen X K, Yang A, Steger M, Thewalt M L W and
Watkins S P 2006 Phys. Rev. B 74 113202

[15] Budde M, Bech Nielsen B, Parks Cheney C, Tolk N H and
Feldman L C 2000 Phys. Rev. Lett. 85 2965

[16] Nickel N H and Fleischer K 2003 Phys. Rev. Lett. 90 197402
[17] McCluskey M D, Haller E E, Walker J, Johnson N M,
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